Abstract
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fixed interval preventive maintenance (PM) and budget constraint are considered.PM activity is a crucial task to reduce the production efficiency. In the current research we focused on a scheduling problem which a job is processed at the upstream stage and all the downstream machines get busy or alternatively PM cost is significant, consequently the job waits inside the buffers and increases the associated holding cost. This paper proposes a new more realistic mathematical model which considers both the PM and holding cost of jobs inside the buffers in the stochastic flexible flow shop scheduling problem. The holding cost is controlled in the model via the budget constraint. In order to solve the proposedmodel, three hybrid metaheuristic algorithms are introduced. They include a couple of well-known metaheuristic algorithms which have efficient quality solutions in the literature. The two algorithms of them constructed byincorporationof the particle swarm optimization algorithm (PSO) and parallel simulated annealing (PSA) methods under different random generation policies. The third one enriched based on genetic algorithm (GA) with PSA. To evaluate the performance of the proposed algorithms, different numerical examples are presented. Computational experiments revealed that the proposed algorithms embedboth desirable accuracy and CPU time. Among them, the PSO-PSAП outperforms than other algorithms in terms of makespan and CPU time especially for large size problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.