Abstract
BackgroundSnail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes.MethodsA snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change.ResultsVolatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope.ConclusionsThis study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.