Abstract

The role of multiple gonadotropin-releasing hormone receptor (GnRH-R) types in the regulation of gonadotropic and nongonadotropic cells remains speculative. To address this issue, we developed a technology integrating laser-captured microdissection of single digoxigenin-labeled pituitary cells coupled with real-time quantitative PCR to examine the expression profiles of three endogenous GnRH-R types (R1, R2, and R3) in immature and mature males of tilapia Oreochromis niloticus. Here, in addition to gonadotropes (luteinizing and folicle-stimulating hormone, FSH), we show GnRH-Rs are also present in lactotropes, somatotropes, thyrotropes, melanotropes (melanocyte-stimulating hormone, MSH), corticotropes and somatolactin cells. Subpopulations of pituitary cells express single (42.9%), multiple (32.4%) or lack (24.7%) GnRH-Rs. In immature males, the percentage of FSH cells containing combinations of GnRH-Rs was significantly higher (R1+R2: 24%, P <0.05; R1+R2+R3: 25%, P <0.01) than in mature males, whereas the percentage showing only R1 and R1 and R3 transcripts (P <0.05) was higher in mature males. Significantly greater copies of R1 and R3 transcripts were found in MSH cells of immature and mature males, respectively (P <0.05). GnRH-R transcripts in other pituitary cells (lactotropes, R1 and R2; somatolactin cells/thyrotropes/corticotropes, R1, R2, and R3) were significantly higher in mature males (P <0.05) but were unaltered in somatotropes and luteinizing hormone cells. Thus, FSH and MSH cells are required for both reproductive states, whereas other pituitary cells are recruited only during testicular maturation. The differential expression of GnRH-Rs in gonadotropic and nongonadotropic cells demonstrates cellular and functional heterogeneity of mechanisms controlling normal sexual development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.