Abstract

Three frequency GNSS (Global Navigation Satellite Systems) signals will be fully accessible in the near future. It is theoretically well-understood that the GNSS navigation performance could be improved with introduction of the third frequency signals. However it remains unclear what numerical improvements can be achieved in the varying navigation scenarios. In this paper, we numerically demonstrate the superior navigation prospect of three frequency GNSS compared to dual-frequency case. Since the third frequency pseudorange is not fully accessible at current stage, a semi-simulation method is firstly introduced to generate the third frequency pseudorange based on the dual-frequency GPS pseudorange and phase measurements. Then the three frequency navigation precision, availability and reliability are examined, compared with their dual-frequency counterparts in varying simulated navigation scenarios. The results show that with three frequency GNSS signals the navigation precision can be improved by 10% in both horizontal and vertical components. More promisingly, the availability of navigation solutions is significantly improved (even by 50% for some scenarios) with higher reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.