Abstract
Ranked set sampling (RSS) has created a broad interest among researchers and it is still a unique research topic. It has at long last begun to find its way into practical applications beyond its initial horticultural based birth in the fundamental paper by McIntyre in the nineteenth century. One of the extensions of RSS is median ranked set sampling (MRSS). MRSS is a sampling procedure normally utilized when measuring the variable of interest is troublesome or expensive, whereas it might be easy to rank the units using an inexpensive sorting criterion. Several researchers introduced ratio, regression, exponential, and difference type estimators for mean estimation under the MRSS design. In this paper, we propose three new mean estimators under the MRSS scheme. Our idea is based on three-fold utilization of supplementary information. Specifically, we utilize the ranks and second raw moments of the supplementary information and the original values of the supplementary variable. The appropriateness of the proposed group of estimators is demonstrated in light of both real and artificial data sets based on the Monte-Carlo simulation. Additionally, the performance comparison is also conducted regarding the reviewed families of estimators. The results are empowered and the predominant execution of the proposed group of estimators is seen throughout the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.