Abstract

Topology optimization using the variable substitution among three fields can achieve a design with desired solid and/or void features. This paper proposes a three-field floating projection topology optimization (FPTO) method using the linear material interpolation. The implicit floating projection constraint is used as an engine for generating a 0/1 solution at the design field. The substitution filtering and projection schemes enhance the length scale and solid/void features to accelerate the formation of structural topology in the physical field. Meanwhile, the three-field FPTO method can be extended to robust formulation, which obtains the eroded, intermediate, and dilated designs with the same topology. The most distinct feature of the FPTO method lies in the adoption of the linear material interpolation scheme, which makes many topology optimization problems straightforward. As an example, the proposed three-field FPTO algorithm is further applied to the design of shell-infill structures using the linear multi-material interpolation scheme. The distribution of the shell material is generated through a simple filtering scheme, and the shell thickness is accurately controlled by the filter radius. Numerical examples are presented to demonstrate the effectiveness and advantage of the proposed three-field FPTO method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call