Abstract

We have studied the nuclear distribution of the non-histone HMG-I protein by indirect immunofluorescence in several human and murine somatic cell lines and in growing mouse oocytes. We show that HMG-I, a high mobility-group protein which interacts in vitro with the minor groove of AT-rich B-DNA, is found exclusively in the nucleus and that this localization corresponds to a complex distribution. By comparing the HMG-I-dependent fluorescence signal with the chromatin density determined by Hoechst 33342 or propidium iodide staining, we present evidence for the existence of three HMG-I sub-populations whose contribution to the total fluorescence can be determined using a newly developed quantitative co-localization image analysis program: foci that correspond to regions of heterochromatin, intense dots located within decondensed chromatin, and a more diffuse component extending throughout the nucleoplasm. In addition, we show that these sub-populations differ in their sensitivity to nuclease digestion and in vivo displacement by the minor-groove binder Hoechst 33342. Finally, double immunolabeling of RNA polymerase II-dependent transcription and HMG-I shows that the intense dots are not correlated with sites of high transcriptional activity. We discuss the possibility that these three sub-populations reflect distinct and separable biological functions of the HMG-I protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call