Abstract

Microinjected GTP gamma S revealed three distinct steps in the exocytic transport of the temperature sensitive glycoprotein of vesicular stomatitis virus (ts-O45-G) from the ER to the cell surface in intact Vero cells. While COPII dependent export of ts-O45-G from the ER is blocked in cells injected with recombinant protein of a dominant mutant of SAR1a (SAR1a[H79G]) inhibited in GTP hydrolysis, neither injected GTP gamma S nor antibodies against beta-COP (anti-EAGE) interfere with this transport step significantly. In contrast, transport to the Golgi complex is blocked by 50 microM GTP gamma S, a dominant mutant of ARF1 (ARF1[Q71L]) inhibited in GTP hydrolysis, or microinjected anti-EAGE, but injected Sar1a[H79G]p has no effect. Microinjection of GTP gamma S or expression of ARF[Q71L] rapidly induces accumulation of COPI coated vesicular structures lacking ts-O45-G. Finally, transport of ts-O45-G from the trans-Golgi network (TGN) to the cell surface is inhibited only by high concentrations of GTP gamma S (500 microM). Interestingly, this step is only partially brefeldin A sensitive, and injected antibodies against beta-COP and p200/myosin II, a TGN membrane associated protein, have no effect. These data provide first strong in vivo evidence for at least three distinct steps in the exocytic pathway of mammalian cells regulated by different sets of GTPases and coat proteins. COPII, but not COPI, is required for ER export of ts-O45-G. COPI plays a role in subsequent transport to the Golgi complex, and a so far unidentified GTP gamma S sensitive coat appears to be involved in transport from the TGN to the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call