Abstract

An understanding of the dynamics of z-pinch wire array explosion and collapse is of critical interest to the development and future of pulsed power inertial confinement fusion experiments. Experimental results clearly show the extreme three-dimensional nature of the wire explosion and collapse process. The physics of this process can be approximated by the resistive magnetohydrodynamic (MHD) equations augmented by thermal and radiative transport modeling. Z-pinch MHD physics is dominated by material regions whose conductivity properties vary drastically as material passes from solid through melt into plasma regimes. At the same time void regions between the wires are modeled as regions of very low conductivity. This challenging physical situation requires a sophisticated three-dimensional modeling approach matched by sufficient computational resources to make progress in predictive modeling and improved physical understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.