Abstract

Three-dimensional vortical structures have been measured in a circular-cylinder wake using particle imaging velocimetry (PIV) for the Reynolds number range of 2×103 to 1×104. The PIV was modified, compared with the conventional one, in terms of its light sheet arrangement to capture reliably streamwise vortices. While in agreement with previous reports, the presently measured spanwise structures complement the data in the literature in the streamwise evolution of the near-wake spanwise vortex in size, strength, streamwise and lateral convection velocities, shedding new light upon vigorous interactions between oppositely signed spanwise structures. The longitudinal vortices display mushroom patterns in the (x, z)-plane in the immediate proximity to the cylinder. Their most likely inclination in the (x, y)-plane is inferred from the measurements in different (x, z)-planes. The longitudinal vortices in the (y, z)-plane show alternate change in sign, though not discernible at x/d > 15. They decay in the maximum vorticity and circulation rapidly from x/d = 5 to 10 and slowly for x/d > 10, and are further compared with the spanwise vortices in size, strength and rate of decay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call