Abstract
We study three-dimensional vortex lattice structures in purely dipolar Bose–Einstein condensate (BEC). By using the mean-field approximation, we obtain a stability diagram for the vortex states in purely dipolar BECs as a function of harmonic trap aspect ratio (λ) and dipole–dipole interaction strength (D) under rotation. Rotating the condensate within the unstable region leads to collapse while in the stable region furnishes stable vortex lattices of dipolar BECs. We analyse stable vortex lattice structures by solving the three-dimensional time-dependent Gross–Pitaevskii equation in imaginary time. Further, the stability of vortex states is examined by evolution in real-time. We also investigate the distribution of vortices in a fully anisotropic trap by increasing eccentricity of the external trapping potential. We observe the breaking up of the condensate in two parts with an equal number of vortices on each when the trap is sufficiently weak, and the rotation frequency is high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.