Abstract
The flow past a cylinder in proximity to a plane wall is investigated numerically for small gap ratios. Three vortex dynamic processes associated with different hairpin vortex generation mechanisms are identified for the first time, and the wake-induced turbulent transition is analysed. The vortex shedding is suppressed at $G/D = 0.1$ , while the spanwise vortex is generated via a Kelvin–Helmholtz instability and evolves into hairpin vortices. For $G/D= 0.3$ , the upper and lower rollers alternatively shedding from the cylinder, interact with the secondary vortex. The split secondary vortex merges with the upper roller and results in a new vortex downstream, which develops into hairpin vortices. When $G/D = 0.9$ , the secondary vortex interacts with the lower roller and then evolves into hairpin vortices. A tertiary vortex induced by the secondary vortex is observed, rotating in the opposite direction to the secondary vortex the wake-induced transitions share the same route. The velocity fluctuations deviate from the optimal growth theory in the pre-transitional region. In the transitional region low-frequency disturbances penetrate the sheltering edge to generate streaks where the disturbance energy declines. In the turbulent region the logarithmic layer is formed, indicating that the turbulent equilibrium is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.