Abstract

Velocity fields downstream of 27 mm Björk-Shiley Standard, Björk-Shiley Convex-Concave, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), St. Jude Medical and Starr-Edwards Silastic Ball aortic valves were studied in a pulsatile mock circulation. Stroke volume was 70 cm 3 and frequency 71 min −1 and 88 min −1. Fluid velocity was measured by a catheter mounted hot-film anemometer probe in a glycerol water mixture one and two diameters downstream of the aortic valve. Velocity fields were dynamically visualized by a three-dimensional technique and revealed qualitative independence of frequency. All profiles were flat in the acceleration phase of systole. From peak systole and throughout the systolic deceleration phase profiles characteristic of the individual valves appeared. The pivoting and tilting disc valves caused a skewed velocity profile with highest velocities downstream of the major orfice and lowest velocities downstream of the minor orifice. The differences between the three investigated Björk-Shiley valves were remarkable. The St. Jude Medical valve generated velocity peaks downstream of the two major orifices and the central slit, and lower velocities in the hinge areas. A rather flat profile with central hollowing was seen downstream of the Starr-Edwards Ball valve. All velocity profiles were more or less dampened two diameters downstream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.