Abstract

Flow structures in lattice cooling channels are investigated experimentally by measuring three-dimensional (3D) velocity components over entire duct. The lattice cooling structure is formed by crossing two sets of parallel inclined ribs. Heat transfer is enhanced when coolant flows through the narrow subchannels between the ribs. According to the past literature, longitudinal vortex structures are formed inside the subchannels due to interactions between crossing flows. In this study, 3D velocity field measurement is performed using magnetic resonance imaging (MRI) scanner to clarify the flow mechanism. The rib inclination angle is varied from 30 to 60 deg. Reynolds number is set at approximately 8000 based on the whole duct inlet hydraulic diameter and bulk velocity. Working fluid is 0.015 mol/L copper sulfate aqueous solution. Measured results show that coolants in the upper and lower subchannels interact not only at the both ends of the duct, but also at diamond-shaped openings formed by opposite subchannels. The exchange of momentum between the upper and lower subchannels occurs at the openings, leading to sustained longitudinal vortex in each subchannel as mentioned in the literature. When the ribs are arranged with obtuse angle, a large vortex spreads across the contact surface, while the vortex structure independently stays in each subchannel for acute rib angle. The measured velocity fields are compared with numerically-simulated ones using a Reynolds-averaged Navier-Stokes (RANS) solver. Overall flow pattern is captured, but flow interaction between the upper and lower subchannels is underestimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call