Abstract
The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a significant widening of the VB mode region in parameter space upon increasing shear rate γ and (ii) a robustness of normalized period of TB and VB with γ. Analytical support is also provided. We make a comparison with existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.