Abstract

The problem of inter-slice magnetic resonance (MR) image reconstruction is encountered often in medical imaging applications, in such scenarios, there is a need to approximate information not captured in contiguously acquired MR images due to hardware sampling limitations. In the context of velocity field reconstruction, these data are required for visualization and computational analyses of flow fields to be effective. To provide more complete velocity information, a method has been developed for the reconstruction of flow fields based on adaptive control grid interpolation (ACGI). In this study, data for reconstruction were acquired via MRJ from in vitro models of surgically corrected pediatric cardiac vasculatures. Reconstructed velocity fields showed strong qualitative agreement with those obtained via other acquisition techniques. Quantitatively reconstruction was shown to produce data of comparable quality to accepted velocity data acquisition methods. Results indicate that ACGI-based velocity field reconstruction is capable of producing information suitable for a variety of applications demanding three-dimensional in vivo velocity data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.