Abstract

Absorbers have potential applications in the stealth field. However, limited bandwidth and low absorption rate persist in existing methods. Moreover, absorbers working in the low frequency range (1-4 GHz) with small size are much more difficult to realize. In this paper, we propose a novel absorption structure, which combines indium tin oxide film and metal resonator. The former realizes impedance matching with free space in a broad bandwidth at moderate frequency range while the latter shows the resonant property at low frequency. Based on this absorption structure, we design the zigzag-shaped structure to realize high-efficiency and ultra-broadband absorption. To demonstrate the feasibility of our method, we fabricate a sample and perform measurements. The measurement results show that our sample can achieve ultra-broadband absorption with high-efficiency of over 90% from 1 GHz to 18 GHz, which is in good agreement with simulation results. Our findings provide a valuable technique for broadband device design, which could bring about a wide range of applications in cloaking technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.