Abstract

In this paper, a theoretical analysis of a three-dimensional transient thermal stress problem is developed for a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction from the inner and /or outer surfaces. Assuming that the hollow circular cylinder has nonhomogeneous thermal and mechanical material properties in the radial direction, the heat conduction problem and the associated thermoelastic behaviors for such nonhomogeneous medium are developed by introducing the theory of laminated composites as one of theoretical approximation. The transient heat conduction problem is treated with the help of the methods of Fourier cosine transformation and Laplace transformation, and the associated thermoelastic field is analyzed making use of the thermoelastic displacement potential, Michell's function, and the Boussinesq's function. Some numerical results for the temperature change and the stress distributions are shown in figures, and the effect of relaxing the thermal stress ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.