Abstract

In steel rolling mills reheat furnaces are used to heat the billets prior to rolling processes. Reheating is one of the most energy intensive processes in the steel industries. Inadequate temperature measuring techniques and extremely complex analytical solution for temperature filed calculations demands suitable numerical model. In the present work a three dimensional transient heat transfer model is developed for billet heating in reheat furnaces. Conduction heat transfer within the billets is modeled using Finite Difference Method (FDM). Fully implicit spatial discretization approximation was used for three dimensional heat diffusion equation of billet. The three dimensional model takes into account the temperature dependent thermo physical properties, reaction heat effect and growing oxide layer. Algorithm is implemented in MATLAB® to solve three dimensional discretization equations. Model is capable of predicting the temperature field for billet and oxide scale thickness for any residence time. The predicted results are in reasonable concurrence with available data. The main objective of this work is to predict billet temperature field and oxide scale thickness for the various residence times, which may be vital for development of energy efficient optimization strategy for reheating process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call