Abstract

ABSTRACTIn this article, transient analysis of functionally graded material (FGM) cylindrical shell subjected to thermomechanical load is performed. Mechanical and thermal properties of the shell are assumed to be graded in radial direction according to power law distribution. In the case of simply supported edge condition, problem is solved analytically using Fourier series expansions for stresses and displacements along the axial direction and state space technique along the radial direction and Laplace transformation technique for time domain. For other boundary conditions, we use a semianalytical method by applying differential quadrature method along the axial direction and the state space method along radial direction. Accuracy of this approach is validated by comparing the results with the results reported in the literature. Moreover, influence of edge boundary conditions, length to mid radius ratio, FGM direction and time on stresses, and displacements is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.