Abstract

Minimum fuel, three-dimensional trajectory optimization from a parking orbit considering the desired landing site is addressed for soft lunar landings. The landing site is determined by the final longitude and latitude; therefore, a two-dimensional approach is limited and a three-dimensional approach is required. In addition, the landing site is not usually considered when performing lunar landing trajectory optimizations, but should be considered in order to design more accurate and realistic lunar landing trajectories. A Legendre pseudospectral (PS) method is used to discretize the trajectory optimization problem as a nonlinear programming (NLP) problem. Because the lunar landing consists of three phases including a de-orbit burn, a transfer orbit phase, and a powered descent phase, the lunar landing problem is regarded as a multiphase problem. Thus, a PS knotting method is also used to manage the multiphase problem, and C code for Feasible Sequential Quadratic Programming (CFSQP) using a sequential quadratic programming (SQP) algorithm is employed as a numerical solver after formulating the problem as an NLP problem. The optimal solutions obtained satisfy all constraints as well as the desired landing site, and the solutions are verified through a feasibility check.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call