Abstract
Tracking moving particles in cells by single particle tracking is an important optical approach widely used in biological research. In order to track multiple particles within a whole cell simultaneously, a parallel tracking approach with large depth of field was put forward. It was based on distorted grating and dual-objective bifocal imaging, making use of the distorted grating to expand the depth of field, dual-objective to gather as many photons as possible, and bifocal plane imaging to realize three-dimensional localization. Simulation of parallel tracking of two particles moving along the z axis demonstrated that even when the two are axially separated by 10 μm, they can both be localized simultaneously with transversal precision better than 5 nm and axial precision better than 20 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.