Abstract

We demonstrate three-dimensional tracking of fluorescent microparticles, with a computational optical system whose point spread function (PSF) has been engineered to have two twisting lobes along the optical axis, generating a three-dimensional (3D) double-helix (DH) PSF. An information theoretical comparison in photon limited systems shows that the DH-PSF delivers higher Fisher information for 3D localization than the standard PSF. Hence, DH-PSF systems provide better position estimation accuracy. Experiments demonstrate average position estimation accuracies under 14nm and 37nm in the transverse and axial dimensions respectively. The system determines the 3D position of multiple particles with a single image and tracks them over time while providing their velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call