Abstract

Prostate cancer frequently metastasizes to bone, inducing osteosclerotic lesions. The objective of this study was to clarify the three-dimensional (3D) trabecular bone microstructure in bone metastasis from prostate cancer by comparison with normal and degenerative sclerotic bone lesions, using microcomputed tomography (micro-CT). A total of 32 cancellous bone samples were excised from the lumbar spine of six autopsy patients: 15 metastatic samples (one patient), eight degenerative sclerotic samples (four patients) and the rest from normal sites (three patients). The samples were serially scanned cross-sectionally by micro-CT with a pixel size of 23.20 microm, slice thickness of 18.56 microm, and image matrix of 512 x 512. Each image data set consisted of 250 consecutive slices. The volumes of interest (96 x 96 x 120 voxels) were defined in the original image sets and 3D indices of the trabecular microstructure were determined. The trabecular thickness (Tb.Th) in degenerative sclerotic lesions was significantly higher than that in normal sites, whereas no significant difference was observed in trabecular number (Tb.N). By contrast, in metastatic lesions, the Tb.N was significantly higher with increased bone volume fraction (BV/TV) than in normal sites, and no significant difference was found in Tb.Th. The characteristics of the trabecular surface in the metastatic samples showed concave structural elements with an increase in BV/TV, indicating osteolysis of the trabecular bone. In 3D reconstructed images, increased trabecular bone with an irregular surface was observed in samples from metastatic sites, which were uniformly sclerotic on soft X-ray radiographs. These results support, through 3D morphological features, the strong bone resorption effect in bone metastasis from prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.