Abstract

We prove that each 3-dimensional connected topological loop L having a solvable Lie group of dimension ≤5 as the multiplication group of L is centrally nilpotent of class 2. Moreover, we classify the solvable non-nilpotent Lie groups G which are multiplication groups for 3-dimensional simply connected topological loops L and dim G ≤ 5. These groups are direct products of proper connected Lie groups and have dimension 5. We find also the inner mapping groups of L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.