Abstract

We apply here spectral‐domain optical coherence tomography (SD‐OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium‐doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∼ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3‐dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs’ polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD‐OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high‐speed SD‐OCT setup for the real‐time DW tracking upon ferroelectric domain switching under high external fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.