Abstract

Exploring capable and universal electrode materials could promote the development of alkalis (Li, Na, K) ion batteries. 2D MXene material is an ideal host for the alkalis (Li, Na, K) ion storage, but its electrochemical performance is limited by serious re-stacking and aggregation problems. Herein, we cleverly combined electrostatic self-assembly with gas-phase vulcanization method to successfully combine Ti3C2Tx-MXene with ultra-long recyclability and high conductivity with MnS, which presents high specific capacity but poor conductivity. The as-prepared 3D hierarchical Ti3C2Tx/MnS composites have an unique sandwich-like constituent units. The tiny MnS nanoparticles are restricted between the Ti3C2Tx layers and play a key role in expanding the Ti3C2Tx interlayer spacing. As a result, the 3D Ti3C2Tx/MnS composites as the anode of LIBs exhibits a superior capacities of 826 and 634 mAh/g after 1000 and 3000 cycles at 0.5 and 1.0 A/g, respectively. More importantly, we reveal the reaction mechanism that the specific capacity first increases and then gradually stabilizes with the increase of charge and discharge cycle times when the as-prepared 3D Ti3C2Tx/MnS was used as the anode of LIBs. In addition, we have also used this material in SIBs and PIBs and achieved remarkable electrochemical capability, with a specific capacity of 107 mAh/g after 2500 cycles at 0.5 A/g or 127 mAh/g after the 2000th cycle at 0.2 A/g, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call