Abstract

Three-dimensional thermal buckling analysis is performed for functionally graded materials. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. Furthermore, the assumed strain mixed formulation is used to prevent locking as well as maintaining kinematic stability of the finite element model for thin plates and shells. The thermal buckling behavior under uniform or nonuniform temperature rise across the thickness is analyzed. Numerical results are compared with those of the previous works. In addition, the changes of critical buckling temperature due to the effects of temperature field, volume fraction distributions, and system geometric parameters are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call