Abstract

We present results from our three‐dimensional (3‐D) simulations using the Salammbô electron radiation belt physical model. We have run steady state and dynamic storm test case simulations to study the effect of electron‐chorus resonant interactions on the radiation belt electron dynamics. When electron‐chorus interactions are introduced in the code outside the plasmasphere, results show that a seed population with a kappa distribution and a characteristic energy of 2 keV is accelerated up to a few MeV in the outer radiation belt. MeV electron fluxes increase by an order of magnitude during high magnetic activity conditions especially near L* ∼ 5 and for equatorial mirroring particles. We have also performed a parametric study of various important parameters to investigate how our results could be influenced by the uncertainty that characterizes their values. Results of this study show that if we consider higher values of the radial diffusion coefficients, different initial states, and different boundary conditions, we always observe a peak in the L* profile of the MeV electrons when electron‐chorus interactions are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.