Abstract

To investigate the application of the multi-beam angle sensor (MBAS) to high-precision optical aspheric and freeform surfaces, which are critical components in optical systems, we present a method of using an MBAS to reconstruct an aspheric surface from angle data. The MBAS is based on a multi-autocollimator system with a microlens array, which can split the beam into several spots and can convert centroid detection of the light intensity into an angle measurement. The MBAS is designed to address the curvature-range problem via a circumferential scan better than other methods and automatically eliminates the tilt error caused by rotation of a workpiece. Using a tracking technique, the MBAS can automatically determine focal spot positions from the centroid measurement of the light intensity. This is directly related to the accuracy of the angular difference measurement. The experimental results confirm the feasibility of using an MBAS for 3D surface profile measurements of cylindrical surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call