Abstract

AbstractThe three-dimensional distribution of melt in partially molten synthetic samples compositionally corresponding to diopside (90 wt.%)–anorthite (10 wt.%) and doped with PbO, WO3, MoO3, or Cs2O to enhance contrast was studied by X-ray computed tomography (CT) with synchrotron radiation. The heavy elements were strongly concentrated in the melt and contributed to an increase of the X-ray linear attenuation coefficient (LAC) of it. PbO was found to be compatible with silicate melt (>20 wt.% in solution) and incompatible with diopside crystals. Other oxides WO3 (∼10 wt.%), MoO3 (∼5 wt.%) and Cs2O (< 5 wt.%) are also soluble only in the melt. Such doping is useful not only for LAC control in X-ray CT measurements, but also for systematic control of the structure (wetting properties, distribution and connectivity) of partial melt. This technique gives basic information for discussion of the 3D distribution of partial melt having different wetting properties. As PbO was most effective in visualization of the diopside–anorthite partially molten system, CT images of the PbO-bearing sample were used for further 3D investigation of distribution. A distribution of dihedral angles at solid-melt-solid triple junctions ranging from 22 to 55° was observed with the 3D data. This range in angle distribution was probably caused by anisotropy of crystals and the result supports the argument that there is some limitation in a theoretical framework of stereology which estimates the 3D structure based on 2D observations. Investigators have begun to apply X-ray CT to the study of the 3D distribution of partial melts in rocks using synchrotron radiation. Our study on the effect of doping is one approach for developing a technique to investigate 3D melt distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call