Abstract
High resolution scanning electron microscopy revealed that the basic unit of the paracrystalline network in squash prolamellar body is a tetrapodal structure, which has four short tubular arms meeting at one point with equal angle. Fractured faces of the prolamellar bodies displayed three lattice forms; hexagonal, square and zigzag (distorted hexagonal) lattices. Tilting observations of the ultrathin sections, together with scanning electron microscope observations, showed that the paracrystalline tubular network in the squash prolamellar body is of zincblende-type. A pentagonal configuration of the network was sometimes observed. Many prolamellar bodies were also very often observed, which displayed two or three different lattice forms in a single prolamellar body. It became evident from these observations that most, if not all, of the prolamellar bodies in the squash etioplasts are paracrystalline network of spinel-type twin which is composed of two or more domains of zincblende-type. We propose a three dimensional model of the squash prolamellar body in which five paracrystal domains of zincblende-type are assembled around a pentagonal column at the center and connected by boundary lattice layers of wurtzite-type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.