Abstract

The oval myosin filament profiles in transverse sections through the M-band of Lethocerus flight muscle are arranged in one of three orientations 60 degrees apart and point along the 11 directions of the hexagonal filament lattice. Relative orientations are not systematically related to give a superlattice structure, but neither are the orientations arranged completely randomly. In fact there is a nearly random structure with a slight bias towards adjacent filaments being identically oriented. This form of M-band structure is explained in terms of interactions between quasi-equivalent M-bridges. Its implications with regard to myosin crossbridge arrangement depend on the rotational symmetry of the crossbridge helix. For 6-stranded helices, 60 degrees rotations have no noticeable effect. However, in the case of the more likely 4-stranded structure, our results show that the crossbridge origins in the insect flight muscle A-band would be highly disordered. This disorder must be accounted for in interpreting both the flared-X crossbridge interactions seen in transverse sections of rigor insect flight muscle and the beautiful X-ray diffraction patterns from the same preparation. It is likely that in rigor insect muscle, some flared-Xs have the two heads of single myosin molecules interacting with two different actin filaments, whereas other flared-Xs have both of the myosin heads in one molecule interacting with the same actin filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.