Abstract

The three-dimensional structure of the proteic complex formed by bovine trypsinogen and the porcine pancreatic secretory trypsin inhibitor (Kazal type) has been solved by means of Patterson search techniques, using a predicted model of the trypsin-ovomucoid complex ( Papamokos et al., 1982 ). The structure of the complex, including 162 solvent molecules, has been refined at 1.8 Å resolution (26,341 unique reflections) to a conventional crystallographic R factor of 0.195. The inhibitor molecule binds to trypsinogen via hydrogen bonds and/or apolar interactions at sites P9, P7, P6, P5, P3, P1, P1′, P2′ and P3′ of the contact area. The structure of the inhibitor itself resembles closely that of the third domain of Japanese quail ovomucoid inhibitor, recently reported by Weber et al. (1981) . The trypsinogen part of the complex resembles trypsin, as is the case in the trypsinogen-basic pancreatic trypsin inhibitor complex, but two segments of the activation domain adopt a different conformation. Most notably in the N-terminal region the Ile16-Gly19 loop, which is disordered in free trypsinogen and in the trypsinogen-basic pancreatic trypsin inhibitor complex ( Huber & Bode, 1978), assumes a regular structure and the polypeptide chain can be traced as far as residue Asp14. This new and fixed structure allows the formation of a buried salt link between the side-chains of Lys156 and Asp194. Conformations differing from those of trypsin are also found for residues 20 to 28 and residues 141 to 155. Some structural perturbation is observed in other parts of the molecule, including the calcium loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call