Abstract

This paper presents three-dimensional data of the mean and turbulent structure of flow collected at a natural confluence of rivers with discordant beds to (1) describe the three-dimensional flow field of a natural junction of channels; (2) assess the role of changes in bed morphology occurring during transport-effective events on the structure of flow at a confluence; and (3) examine how the three-dimensional structure of flow varies with changes in the ratio of momentum flux between the two confluent streams. Three-dimensional measurements of velocity were reconstructed from the measurements obtained with an array of four, two-component electromagnetic current meters. Six detailed velocity profiles were taken at five cross-sections in a wide range of flow conditions. The mean field of flow is characterised by (1) the acceleration of flow in the downstream portion of the post-confluence channel, but by lower velocities upstream in the mixing layer area; (2) a stagnation zone at the apex of the junction; (3) a zone of flow deviation, and strong fluid upwelling, close to the avalanche face and at the margin of the tributary mouth bar; and (4) reduced velocities over the depositional bar at the downstream junction corner. The position and extent of these zones vary with changes in the ratio of momentum flux. Very high intensity of turbulence (peaks up to 50%) and turbulent kinetic energy were observed in the mixing layer region. Distortion of the mixing layer, characteristic of flow where bed discordance is present between the two tributary channels, was evident from mean and turbulent flow data. This field study suggests that the effects of bed discordance on flow, sediment transport, and the resultant bed morphology must be incorporated into conceptual and numeric models of these sites of complex flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.