Abstract

We report here the complete determination of the solution structure of acylphosphatase, a small enzyme that catalyses the hydrolysis of organic acylphosphates, as determined by distance geometry methods based on nuclear magnetic resonance information. A non-standard strategy for the distance geometry calculations was used and is described here in some detail. The five best structures were then refined by restrained energy minimization and molecular dynamics in order to explore the conformational space consistent with the experimental data. We address the question of whether the solution structure of acylphosphatase follows the general principles of protein structure, i.e. those learned from analysing crystal structures. Static and dynamic features are discussed in detail. An uncommon β-α-β motif, so far found only in procarboxypeptidase B and in an RNA-binding protein, is present in acylphosphatase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.