Abstract
Mechanical stability in many biological materials is provided by the crosslinking of large structural proteins with gamma-glutamyl-epsilon-lysyl amide bonds. The three-dimensional structure of human recombinant factor XIII (EC 2.3.2.13 zymogen; protein-glutamine:amine gamma-glutamyltransferase a chain), a transglutaminase zymogen, has been solved at 2.8-A resolution by x-ray crystallography. This structure shows that each chain of the homodimeric protein is folded into four sequential domains. A catalytic triad reminiscent of that observed in cysteine proteases has been identified in the core domain. The amino-terminal activation peptide of each subunit crosses the dimer interface and partially occludes the opening of the catalytic cavity in the second subunit, preventing substrate binding to the zymogen. A proposal for the mechanism of activation by thrombin and calcium is made that details the structural events leading to active factor XIIIa'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.