Abstract

Measuring displacement for large-scale structures has always been an important yet challenging task. In most applications, it is not feasible to provide a stationary platform at the location where its displacements need to be measured. Recently, image-based technique for three-dimensional (3D) displacement measurement has been developed and proven to be applicable to civil engineering structures. Most of these developments, however, use two or more cameras and require sophisticated calibration using a total station. In this paper, we present a single-camera approach that can simultaneously measure both 3D translation and rotation of a planar target attached on a structure. The intrinsic parameters of the camera are first obtained using a planar calibration board arbitrarily positioned around the target location. The obtained intrinsic parameters establish the relationship between the 3D camera coordinates and the two-dimensional image coordinates. These parameters can then be used to extract the rotation and translation of the planar target using recorded image sequence. The proposed technique is illustrated using two laboratory tests and one field test. Results show that the proposed monocular videogrammetric technique is a simple and effective alternative method to measure 3D translation and rotation for civil engineering structures. It should be noted that the proposed technique cannot measure translation along the direction perpendicular to the image plane. Hence, proper caution should be taken when placing target and camera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call