Abstract

Half a century has passed since the dedicated studies on the contraction mechanisms of muscle began, with considerable knowledge on its molecular architecture. Two major hypotheses were raised very early, one, ”sliding filament theory”,1,2 and the other, “crossbridge theory”. 3 The former was readily accepted, because the phenomenon was apparently visible under optical microscope. The latter, however, has been hindered from thorough experimental proof even now, though nothing other than crossbridges connect thick and thin filaments enabling force development. The original idea postulated the rowing movement of actin-bound myosin head coupled with ATP hydrolysis, but it was later replaced by swinging of the “lever-arm” moiety,4 according to the discovery of intramolecular bending by X-ray crystallography.5-8 One of the major reasons for such persistent difficulty to prove this simple hypothesis might be the lack of means to directly observe the actual structural change of working crossbridges with time and spatial resolution enough to visualize the fine details of the molecular nano-machine. Though the crystal structure of each component; actin9, 10 and myosin subfragment-1 (S1) with or without various nucleotides,5-8 was determined ten years ago, none of their complexed form was solved nor might be the subject matter for easy crystallization.KeywordsActin FilamentMyosin HeadEssential Light ChainMyosin Motor DomainScallop MyosinThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.