Abstract

Steady streaming vortex flow from microbubbles has been developed into a versatile tool for microfluidic sample manipulation. For ease of manufacture and quantitative control, set-ups have focused on approximately two-dimensional flow geometries based on semi-cylindrical bubbles. The present work demonstrates how the necessary flow confinement perpendicular to the cylinder axis gives rise to non-trivial three-dimensional flow components. This is an important effect in applications such as sorting and micromixing. Using asymptotic theory and numerical integration of fluid trajectories, it is shown that the two-dimensional flow dynamics is modified in two ways: (i) the vortex motion is punctuated by bursts of strong axial displacement near the bubble, on time scales smaller than the vortex period; and (ii) the vortex trajectories drift over time scales much longer than the vortex period, forcing fluid particles onto three-dimensional paths of toroidal topology. Both effects are verified experimentally by quantitative comparison with astigmatism particle tracking velocimetry (APTV) measurements of streaming flows. It is further shown that the long-time flow patterns obey a Hamiltonian description that is applicable to general confined Stokes flows beyond microstreaming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.