Abstract
AbstractIn this study, we use published geologic maps and cross-sections to construct a three-dimensional geologic model of major shear zones that make up the Himalayan orogenic wedge. The model incorporates microseismicity, megathrust coupling, and various derivatives of the topography to address several questions regarding observed crustal strain patterns and how they are expressed in the landscape. These questions include: (1) How does vertical thickening vary along strike of the orogen? (2) What is the role of oblique convergence in contributing to along-strike thickness variations and the style of deformation? (3) How do variations in the coupling along the megathrust affect the overlying structural style? (4) Do lateral ramps exist along the megathrust? (5) What structural styles underlie and are possibly responsible for the generation of high-elevation, low-relief landscapes? Our model shows that the orogenic core of the western and central Himalaya displays significant along-strike variation in its thickness, from ∼25–26 km in the western Himalaya to ∼34–42 km in the central Himalaya. The thickness of the orogenic core changes abruptly across the western bounding shear zone of the Gurla Mandhata metamorphic core complex, demonstrating a change in the style of strain there. Pressure-temperature-time results indicate that the thickness of the orogenic core at 37 Ma is 17 km. Assuming this is constant along strike from 81°E to 85°E indicates that, the western and central Nepal Himalaya have been thickened by 0.5 and 1–1.5 times, respectively. West of Gurla Mandhata the orogenic core is significantly thinner and underlies a large 11,000 km2 Neogene basin (Zhada). A broad, thick orogenic core associated with thrust duplexing is collocated with an 8500 km2 high-elevation, low-relief surface in the Mugu-Dolpa region of west Nepal. We propose that these results can be explained by oblique convergence along a megathrust with an along-strike and down-dip heterogeneous coupling pattern influenced by frontal and oblique ramps along the megathrust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.