Abstract

This work introduces the three-dimensional steerable discrete cosine transform (3D-SDCT), which is obtained from the relationship between the discrete cosine transform (DCT) and the graph Fourier transform of a signal on a path graph. One employs the fact that the basis vectors of the 3D-DCT constitute a possible eigenbasis for the Laplacian of the product of such graphs. The proposed transform employs a rotated version of the 3D-DCT basis. We then evaluate the applicability of the 3D-SDCT in the field of 3D medical image compression. We consider the case where we have only one pair of rotation angles per block, rotating all the 3D-DCT basis vectors by the same pair. The obtained results show that the 3D-SDCT can be efficiently used in the referred application scenario and it outperforms the classical 3D-DCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.