Abstract

A prototype 1,310-nm wavelength spectral domain optical coherence tomography (SD-OCT) instrument was constructed and mounted onto a conventional slit lamp for imaging of the anterior segment. The device had an axial resolution of 8 microm and was able to acquire real-time two-dimensional images at 14 frames/second and full three-dimensional datasets in approximately 7 seconds. An SD-OCT dataset of 100 B-scans, each consisting of 512 A-scans, was acquired from the left eye ofa patient who had undergone phacoemulsification with a clear corneal incision. The resulting dataset could be manipulated in three-dimensional space to analyze the geometry of the wound. Additionally, stromal edema and iris features were clearly imaged with the device. SD-OCT can be used to analyze clear corneal incisions to determine optimal wound construction technique and geometry as they relate to the prevention of complications such as postoperative wound leak, infection, and epithelial ingrowth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.