Abstract

We construct a class of three-dimensional strongly nonlocal spatiotemporal solitary waves of the nonlocal nonlinear Schrödinger equation, by using superpositions of single accessible solitons as initial conditions. Evolution of such solitary waves, termed the accessible light bullets, is studied numerically by choosing specific values of topological charges and other solitonic parameters. Our numerical results reveal that in strongly nonlocal nonlinear media with a Gaussian response function, different classes of accessible spatiotemporal solitons can be generated and controlled by tailoring different soliton parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.