Abstract

Three-dimensional Sn rich Cu6Sn5 electrodes were fabricated by the pulse electrodeposition process on a porous nickel foam substrate to improve discharge capacity and cycleability of the SnCu alloy negative electrodes for Li-ion batteries. It was aimed to investigate the effect of peak current density on the structure and electrochemical performance of the Sn rich Cu6Sn5 electrodes. The morphology and the structures of the SnCu alloy electrodes were characterized by scanning electron microscopy (SEM). X-ray diffraction (XRD) analyses was also performed to investigate the structure of electrodeposited SnCu based electrodes. The electrochemical features of the electrodes were investigated by charge/discharge tests, cyclic voltammetry experiments and the ac impedance technique. Results showed that morphology of the electrodes exhibited a strong effect on the electrochemical performances and the best electrochemical performances were achieved in the alloy electrodes, which has dendritic like structure obtained using high peak current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.