Abstract

SummaryFailure in geotechnical engineering is often related to tension‐induced cracking in geomaterials. In this paper, a coupled meshless method and FEM is developed to analyze the problem of three‐dimensional cracking. The radial point interpolation method (RPIM) is used to model cracks in the smeared crack framework with an isotropic damage model. The identification of the meshless region is based on the stress state computed by FEM, and the adaptive coupling of RPIM and FEM is achieved by a direct algorithm. Mesh‐bias dependency, which poses difficulties in FEM‐based cracking simulations, is circumvented by a crack tracking algorithm. The performance of our scheme is demonstrated by two numerical examples, that is, the four‐point bending test on concrete beam and the surface cracks caused by tunnel excavation. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.