Abstract

A composite scheme based on the finite-difference time-domain method and a plane-wave expansion method is developed and applied to the optics of periodic liquid-crystal microstructures. This is used to investigate three-dimensional light-wave propagation in grating-induced bistable nematic devices with double periodicity. Detailed models of realistic devices are analyzed with emphasis on two different underlying surface-relief grating structures: a smooth bisinusoidal grating and a square-post array. The influence of the grating feature size is quantified. Device performance is examined in conjunction with an appropriate compensation layer, and the optimum layer thickness is determined for the different grating geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.