Abstract

Using 3D particle-in-cell simulations we study ion acceleration from a foil irradiated by a laser pulse at 10(19) W/cm(2) intensity. At the front side, the laser ponderomotive force pushes electrons inwards, thus creating the electric field by charge separation, which drags the ions. At the back side of the foil, the ions are accelerated by space charge of the hot electrons exiting into vacuum, as suggested by Hatchett et al. [Phys. Plasmas 7, 2076 (2000)]. The transport of hot electrons through the overdense plasma and their exit into vacuum are strongly affected by self-generated magnetic fields. The fast ions emerge from the rear surface in cones similar to those detected by Clark et al. [Phys. Rev. Lett. 84, 670 (2000)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.