Abstract

We simulate flow and dispersion of tracers in three-dimensional fractured geometries obtained with Voronoi tessellations. “Fractures” are generated and discretized using a parallel in-house code. These “fractures” can also be regarded as the high-permeability flow paths through the rock or a network of the “super-k” channels. The generated geometry contains multiply-connected matrix and fracture regions. The matrix region represents a porous rock filled with solid, water, and oil. Tracers diffuse in both regions, but advection is limited only to the fractures. The lattice-Boltzmann and random-walk particle-tracking methods are employed in flow and transport simulations. Mass-transfer across the matrix–fracture interface is implemented using the specular reflection boundary condition. Tracer partitioning coefficients can vary among the tracer compounds and in space. We use our model to match a field tracer injection test designed to determine remaining oil saturation. By analyzing the time-dependent behavior of the fully resolved, three-dimensional “fracture”–matrix geometry, we show that the industry-standard approach may consistently overestimate remaining oil saturation. For a highly heterogeneous reservoir system, the relative error of the field-based remaining oil estimates may exceed 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.