Abstract

A three-dimensional (3D) simulation of four photocatalytic microreactors is performed using mass and momentum balance equations. The simulated results are validated with the available experimental data for the photocatalytic removal of methylene blue (MB) in two microcapillaries as well as dimethylformamide (DMF) and salicylic acid (SA) in two microchannels. In the surface layers of the microreactor, a photo removal reaction takes place, and the kinetic rates are described by the Langmuir-Hinshelwood (L-H) model. The Damkohler number for these microreactors is less than one, which indicates that the mass transfer rate is limited by the reaction rate. The numerical study and kinetic constants determination are carried out by using computational fluid dynamic techniques. The 3D modelpredictionsare ingood agreementwith the availableexperimental data sets. The results of the parametric study show that by increasing the microreactor length from 50 to 90mm, the removal efficiency improves from 76% to 93%. Moreover, the removal rate is increased by about 40% by reducing the microchannel depth from 500 to 100 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.